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We investigate to what general form can 2 Hamiltonian be reduced by an arbit-
rary canonic transformation preserving the property of Liapunov stability, We have
succeeded in answering this question fully in the case of a stable autonomous
Hamiltonian, One of the results of the analysis undertaken is 2 method of reduc-
ing the Hamiltonian to normal form in finite order, different from those proposed
earlier [1], possessing definite advantages in comparison with them and exposing
the connection between the methods of normalization and of averaging, We de-
rive a table allowing us to compute from the original Hamiltonian its third-order
normal form in the presence of any third-order resonances, A canonic transfor-
mation of the original Hamiltonian to a form more convenient for study is usu-
ally used in the investigation of the Liapunov stability of an equilibrium position,
From such a viewpoint we can arrive at the method of Birkhoff transformations
[2] and many stability results have recently been obtained in this way, having a
practical value (for example, [3—5] and others), In the application of the method
indicated it is necessary that there exist a close connection between the stability
properties of the original and of the ransformed Hamiltonians, Therefore, only
autonomous transformations are usually used, However, such a restriction is not
connected with the conditions for the applicability of the given method even in
the case of an autonomous original Hamiltonian, It is interesting to consider this
problem from a general point of view, without being tied down to the autonomous
case,
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1, We examine Hamiltonians not containing linear terms, defined on one and the
same 2n-dimensional space, continuously differentiable with respect to the phase coor-
dinates and depending continuously on time, The canonic transformations are wreated as
canonic automorphisms of this space, By the stability (or instability) of a Hamiltonian
we mean the Liapunov stability (or Liapunov instability) of the zero solution of the cor-
responding Hamiltonian system for ¢ > U. The canonic transformation

k:g;p—>qg (¢t a,psp (6 g, 1) t>0

is called a canonic Liapunov transformation if % leads every stable Hamiltonian into a
stable one and an unstable one into an unstable one,

By L we denote the set of all canonic Liapunov transformations, Set L being a sub-
group of the group of all canonic transformations, specifies an equivalence relation on
the set of Hamiltonians being examined, namely, two Hamiltonians are equivalent (nota-
tion: Hy, ~ H,) ifwecanfind k= L and k: H, — H,. We denote the equiva-
lence class of Hamiltonian i by L (H). If H is autonomous, then L, () denotes
the set of all autonomous Hamiltonians equivalent to H.

In connection with the investigation of stability in finite order itis necessary to modify
somewhat the definitions presented, Firstly, all the Hamiltonians and canonic transfor-
mations are assumed in this case to be ( m - 1)-times continuously differentiable with
respect to the phase coordinates (m is the order to which the stability is to be investiga-
ted), Secondly, instead of & and H it is sufficient to examine the initial segments of
their Taylor expansions up to m-th order, We denote them A™ and H(, Thirdly,
the definition of equivalence is changed correspondingly : two Hamiltonians H, and H,
are said to be m-equivalent (H,MmH,), if we can find a canonic transformation & :
ktn-1) = [ leading H, into H, and H,'(™ = H,(m, We note that if H,mH, and
Hy™ is a stable Hamiltonian, then ), is said to be stable in the m-~th order and the
standard estimates [6] are valid for its phase flow, However, if H,") is unstable, then
in a majority of cases we can show that /| is unstable,

2, Let us consider certain criteria for £ to belong to L. If the functions ¢, p',yiel-
ding a canonic transformation, are known in explicit form, we can apply the following,

Assertion 1, Transformation & € L if and only if the following conditions are
fulfilled: (a) | P' (£, ¢, p); ¢’ (¢, ¢, p) || has an infinitely small upper bound at zero;
(b) there exists a function & (g) > 0, defined in some positive neighborhood of zero,
such that [p’ (¢, ¢, p); ¢’ (¢, ¢, p) [>> 0 (¢) when [p; ¢|> & t>0. Here |- |
is the norm in phase space,

Proof, The sufficiency can be verified directly, We proove the necessity of con-
dition (a), If it is not filfilled, then we can find sequences ¢;, p; — 0; t; > 0 ,and a con-
sant € > O such that o s o b Ot g ) | > C 2.1)
Let H; be the preimage of an identically zero Hamiltonian #, = ¢ under transforma-
tion k. Then ¢’ and p’ give the phase flow of #; for t> 0. In this case the instability
of H,follows from (2,1); but since H, is stable, ¥ = L. The necessity of (b) is proved
analogously,

It turns out that condition (b) is a corollary of condition (a) for many important classes
of canonic transformations, The three assertions presented below refer to this case,
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Assertion 2, If k possesses the group property,i,e,
zlty+ by 2) =a(h, z(ty 7)) (€= (p, ) (2.2)

then k£ & L if and only if condition (a) of Assertion 1 is fulfilled,

Proof, From the one-to-oneness of ¥ and from (2, 2) it follows that ¢’ = ¢, p’ = p
for ¢t =0 and, therefore, k yields a canonic dynamic system in the neighborhood of the
phase space origin, Let us consider an arbitrary invariant for ¢ > 0, open neighborhood
R of the origin, R can be found because condition (a) is fulfilled and Poincaré theo-
rem on the recurrence of points [7] is valid in R, We select constants 0 < §, <C g
such that the sphere S, ={p. qllpali< goy € R and

Pt a,p) gt p)ES, for t>0;p,9& S, (2. 3)

We now assume that condition (b) is not fulfilled, Then we can find a point gy, PeEER
such that, firstly, it is Poisson-recurrent for ¢ > 0 [7] and, secondly, | g, po | > &0 2nd
12" (T, 0, Po); &' (T, 40, p) | <8, for some T > 0. Hence it follows that we can find

ty > T for which . .
° [0’ (tor G0 Po)s €' (tor s Do) | > €6 (2.4)

If we denote ¢y = ¢ (T, g¢. Po)» P1r = 2" (T, qos Do), then from (2,2) and (2,4) we obtain

12" Cto — Ty p0)s ¢ (Go— Tha, POI>80 b1 E SBo

whisch contradicts (2, 3), The contradiction obtained proves what we required,
The next two assertions are presented without proofs, based on the specifying the cano-~
nic transformation by a generating function,

Assertion 3, In order that a linear canonic transformation be a Liapunov canonic
transformation, it is necessary and sufficient that condition (a) of Assertion 1 be fulfilled,
Assertion 4, If a canonic transformation starts with an identity transformation,
then 2™ & L if and only if u{™-Y has an infinitely small upper bound at zero for

¢t > 0,where u is the generating function for 4.

3, Asgsertion 2 makes it possible to describe a sufficiently broad class of Liapunov
canonic transformations, The phase flow of Hamiltonian H is denoted k.

Assertion 5, If H is a stable autonomous Hamiltonian, then kg € L,

Proof, By the definition of a stable Hamiltonian condition (a) of Assertion 1 is ful-
filled for the canonic transformation kg. Since H is autonomous, ky satisfies the group
property, Thus, all requirements of Assertion 2 are fulfilled and Ay & L.

We present here several corollaries of the last assertion, which can be useful in the sta-
bility investigations of Hamiltonians, All the Hamiltonians below are assumed autono-
mous,

Corollary 1, If H is a stable Hamiltonian, then H; = — H is stable as well,

Corollary 2, If H (g, p)isa stable Hamiltonian, then H, (¢, p) = H (p, @
is stable as well,

Corollary 3, If H isa stable Hamiltonian, then the zero solution of the correspon-
ding Hamiltonian system is Liapunov-stable also for ¢ <C 0.

Corollary 4, If {H, F} = 0 ({,} are the Poisson brackets) and F is a stable
Hamiltonian, then H ~ H -} F.

Assertion 5 makes possible a complete description of class L, (H) when H is stable,
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Assertion 6, Let H be a stable autonomous Hamiltonian; then L, (H) consists
of all stable autonomous Hamiltonians,

Proof, Let F be a stable Hamiltonian, The canonic transformation k = k,‘} o ky
takes H into F. Since H and F are stable and L is a group, k < L by Assertion 5,
Hence F ~ H.

4, Consider the autonomous Hamiltonian
H=H,+H;+ ... (4.1)

In the stability investigation of such Hamiltonians it is convenient to use canonic trans-
formations with a generating function of the form

w= o + St g, 1) .2

where u; is a homogeneous / th-order polynomial, By L™ (H) we denote the set of all
F(™ corresponding to those Hamiltonians F for which H#flF (see Sect,1) in the class
of canonic transformations with a generating function of form (4, 2). The class L,™ (H)
is determined from L™ (H) in the same way that L, (H) was from L (H).

The main question to be studied in Sect, 4 is the description of classes L,™ (H). The
class L,?(H) consists of only one Hamiltonian H,. Therefore, we begin our analysis
with m =3. Here, as usual, we assume that H, is a stable Hamiltonian; if this is not
so, then, excepting the singular case of nonprime elementary divisors, / is unstable,

To study the class L.? (H) it is sufficient to retain only usin (4,2). As followsfrom
Assertion 4, in order that A®) e [, it is necessary and sufficient that

suPg>o| us (4, 4, pi<+ o (4, 3)

Let us consider a canonic wransformation % with a generating function (4, 2), where u;=0
for i > 3 and u,satisfies (4, 3), Transformation k takes H into F defined by an
identity in ¢, p’, ¢ ou ou ou

F( g ¥)=H(e 55)+ 5

Expanding both sides of the identity ir a neighborhood of point ¢, p, we get that

F, = H,, and F, is found from the relation

0uy/ot + {us, Hy} = Oy= F3 — Hy (4.4)

Thus, for F©® = H, + F; to belong to L,® (H) it is necessary and sufficient that a
cubic solution of Eq, (4, 4) be found, satisfying (4, 3), Here F; is independent of £. By
direct computation we can verify that the general cubicsolution of (4,4) is

t
= §(D3 by, (— 1, ¢, p)ydr -+ vs(t, g, p) (4. 5)

where U3 is an arbitrary cubic first integral for H, ({v3, H,} = 0). Let us ascertain
the conditions under which solution (4, 5) of Eq, (4, 4) will satisfy (4, 3), The phase flow
of the stable quadratic Hamiltonian H,.is a linear conic transformation almost-periodic
on the whole axis, Therefore, the first summand in expression (4, 5) is bounded for ¢ >> 0
if and only if it is almost-periodic for ¢ > 0 [8], We denote it w;. We note that the
almost-periodicity of w,for ¢ > ( is equivalent to the almost-periodicity of w; for
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t < 0. Indeed, the identity

Wy (t$ kﬁ, (t! a4 p)) =—ws (_ £ q, P)
is valid, The left-hand side of this identity, being a superposition of two functions almost-
periodic for £ > 0, is also almost-periodic for ¢ > 0 [9]. The equality [8]

D, = MD, (kg) = 0

serves as a necessary, and since w, is a trigonometrical polynomial, and also sufficient
condition for the almost-periodicity of w3 (— I, ¢, p), Here the overbar signifies ave-
raging over the phase flow kg, for £ > 0 ,while } is the operator of averaging over
t fort > 0.

The second summand in (4, 5) is represented as [10]

vs (¢, g, p) = @4 (kn,(—t, ¢, p))

where o,is an arbitrary third-order form, Therefore, wg is an almost-periodic function,
Consequently, if (P, = 0, then ugzis an almost-periodic and, consequently, bounded
function, Thus, the criterion for #® to belong to L, (H) can be written as

ngﬁa (406)

(H; isa cubic polynomial uniquely definable from H), Relation (4,6) signifies that
there holds —

Assertion 7, Class Ly®(H) is an invariant set for the operator of averaging over
the phase flow kg, and is completely defined by this condition,

To prove this we merely note that H, = H,. The rest follows immediately from
(4.8),

Assertion 8, If F® = L3 (H) then we can find an autonomous canonic trans-
formation establishing this membership,

This assertion has a rather unexpected corollary : the extension of the class of admis-
sible canonic transformations up to the nonautonomous forms (4, 1) does not extend the
class of equivalent Hamiltonians obtainable,

Proof, Let F® < L3 (H). In this case, according to (4,6), Fy = H, and, as was
ascertained above, the generating function ug defined by (4, 5) is a cubic polynomial
with almost-periodic coefficients, Therefore, dug/dz; (x ~ (g, p)) is a quadratic form
with almost-perlodic coefficients, Let us show that

duz @
T, =z, M (4.7

To do this we write x, as

us == Z a (t)r{

=3

on
I
l=(k, ... k), xl:xiln' xzrzzn* 1”22 lf
J==1

Using the linearity of the averaging operator, we obtain

7] a 1 __ apOus
oy Mo =g 2 Moy = MER
i i3 i

We apply the averaging operator to identity (4, 4), where the function u, is defined by
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(4. 5)
dus

M~ + M {us, Ha) = My (4. 8)
From (4, 7) it follows that M {u,, H,} = {Mug, H,}. In addition, because uy is bounded
and @, is autonomous, Maug/dt = 0 and M®; = @s. Therefore, (4, 8) becomes the
identity {Mug, H,} = ®@;. This identity signifies that Mu, is an autonomous solution of
(4.4). Q.E,D,

Assertion 8 narrows the class of admissible canonic transformations of form (4, 2) down
to autonomous ones, It turns out that for obtaining the class Lo® (H) it is sufficient to
examine not all the autonomous transformations but only those in which the generating
function satisfies the condition %3 = 0.

Let us prove this, As we ascertained above, if F® < L3 (H). then the canonic trans-
formation with generating function » = gp’ -{- M,~w,, where w; is determined by (4, 5),
establishes the equivalence Hy; ~ F. (The subscript of symbol M for the averaging
operator denotes the variable with respect to which the averaging is carried out, while
the superscript denotes the direction of the averaging : minus corresponds to t — — oo,
plus corresponds to ¢t — - o0.)  We denote us* = M, w;. Using the strengthened theo-
rem on the mean [8], we obtain

Bg* = M tug* (kg (4, 0, p) = MHMws (k)] = M+ [M (s (t —
T, @, p) — wy (— T, & )] =M* [ug* — wy (=T, ¢, P)] = ug* —ug* =0

Thus, to obtain the whole class L,% (H), it is sufficient to apply to H the set K5 of
autonomous canonic transformations of form (4,2) with u#; = Q for { > 3 and f15==0.
It can be shown that Kj is the minimal set generating L,® (H). Combining all the
facts proved above, we can state

Assertion 9, To obtain the class L3 (H) it is necessary and sufficient to apply
the set Ky of canonic transformations to # .

Set K essentially depends upon the presence of third-order resonances in H,. Thus,
if H, does not have them at all, then it can be shown that K g contains all cubic fogms,
while at the other extreme case of H, = ( it is easy to convince ourselves that X,
contains only the identity transformation, Correspondingly, in the first case the class
L2 (H) includes all possible F®, while in the second, only F®) = H®),

Let us pass on to the investigation of L,* (H). Let F» & L * (H). Then,accord-
ing to Assertion 4, F® & L;? (H). For the determination of ¥4 we obtain the equation

du
#—+{U4,H2}=¢4EF4—H4—W4 (4.9)
- dFs Ous 03 Ous 1 0%H2 Ous Odus

4 = —

dq dp + ap  dq 2 Bqidqz op1 opz

Equation (4, 9) can be investigated in just the same way as Eq, (4,4), We state here the
result of such an investigation,

Assertion 10, Inorderthat F) & L,* (H), it is necessary and sufficient that
F& = H& 4 ¥

Assertions of type 7 and 8 do not hold for L,* (H) because, in general, ¥, depends
on ¢ But if we restrict ourselves in (4,2) to ugz & K, then Assertion 7 carries over
verbatim to L,* (H), while in Assertion 8, instead of K, we should take the set K, of
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autonomous canonic transformations of form (4,2) with u; = 0 for { > 4 and i, =
i, = 0. The investigation of classes Lo™ (H) for m>>4 proceeds analogously, Inthe
general case the condition for the membership: F™ & L,™ (H) is the equality F™ =
H™ 4§, where W™ depends upon F, H® with i < m. Here, if we use only the
canonic transformation from X,,_, for obtaining ™1 | then for obtaining F™ it is
necessary and sufficient to apply to H the transformations from K,,, where K,, is the
set of autonomous canonic transformations of form (4, 2) with ¥; =0 for i > m and

By = ...=in=0.

6., Let us explain how to find the normal form of an mth-order Hamiltonian H in
the class L,™ (H), For this we present, first of all, a definition of normal form some-
what different from the usual one,

Definition, The Hamiltonian A™ = H, + hy + ... + h, &.L," (H),
being in involution with H,,is called the 7 th-order normal form of the Hamiltonian
(4.1).

As follows, for example, from [1], this definition is equivalent to the standard one
(defining the normal form as a polynomial with terms of a special structure) if H, has
already been normalized,i,e. H, =1/, 3 A;(¢:* + p;?). In the general case the de-
finition given is a generalization of the classical definition of normal form, which is not
essential but is convenient for applications,

We start with the finding of the third-order normal form, From the definition given
above and from (4, 6) it follows that 43 = H, + hy; hy = H 4 hgis the first inte-
gral for H, and, therefore, hy = hy. Consequently, the third-order normal form is

M =H, + H, (5. 1)

Formula (5,1) makes it possible to determine the third-order normal form right away,
without having to find the normalizing transformation; from H, only stability is requi-
red, In particular, H, can have zero or equal natural frequencies, Note that the com-
putation of H ; reduces to a simple computation of the integrals of sines and cosines,
These cases were not examined in the usual approach to the normal form, An exception
is the recent papers [11, 12] in which the normal form of a Hamiltonian system with two
degrees of freedom is found in the presence of equal frequencies and certain applications
of the normal form obtained to stability questions are studied,

For finding the fourth-order normal form, as in the case examined above, we obtain
that B = 3 o 34 +@4 (5.2)
where W, is determined from (4. 9). For finding h, in ¥, we should set Fy=H,
and Uz = wy & K;, Analogously, we can show that for m > 4 the normal form is

d . : _ _
etermined by the relation W = BmD 4 H, 4 T, (5.3)

where ¥, is completely determined by H(™ ). We shall not derive here the general

form of W, because of its awkwardness, We note merely that if we restrict ourselves

to class K,, when finding the normalizing transformation, which is sufficient,as was ascer-
tained above, then ¥,, and, respectively, the normal form K™ are determined uniquely,
1f, however, this condition is waived, then such uniqueness is not obtained, in general,
because of the presence of an arbitrary first integral in formula (4, 5),
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The normalization method presented allows us to establish the close connection bet-
ween the methods of normalization and of averaging, For this we apply the canonic
transformation &, & L to the original Hamiltonian & , We then obtain H ~ F:
Fy, =0, Fg = Hy(kg), Fy = H, (kn,). Next, we make one more canonic trans-
formation ke: ¢, p — €7'¢» £7'p with valence &£~2 where ¢ is a small parameter,
We get that F ~ G: G, = 0, Gy = &F,;, G, = e*F,. The equation system with
Hamiltonian G = 5. OF3 G Fs

q:—é;-ES—a;—+..-’ p=-—-—-—_=_‘——8 aq

is the standard system in the theory of averaging, Let us convince ourselves that we can
apply Bogoliubov's fundamental averaging theorem [8] to it, To do this it is sufficient
to show that M *dF4/dx (x = (g, p)) exists uniformly in a neighborhood of zero, For
which, in turn, it is sufficient that the family of functions

T

fr @) =4\ o
0
be uniformly bounded and equicontinuous, The first is obvious, While the second follows
from the fact that §°F, / dx;0%; are functions linear in £ and almost-periodic in ¢
and, therefore, are uniformly bounded,
Using the permutability of the operators of averaging and of differentiation (see Sect,
4), we can write the first-approximation averaged system as

Carrying out the inverse canonic transformation kdyok™, we get that the Hamiltonian
of the first-approximation equation system is equivalent (in the sense of Sect, 1) to the
third-order normal form of the original Hamiltonian, An analogous analysis can be made
for the higher orders,

6. Let us consider a mechanical example, being of independent interest, which illu-
strates the application of the results of Sect, 5 to the stability investigation of Hamilton-
ian systems, In [3],in the investigation of the stability of the steady-state rotations of
a symmetrical artificial satellite in a circular orbit, the cases which in the parameter
plane correspond to the boundaries of the stability domains were not considered, Let us
analyze one such case here, namely, when & = B = 1. This case corresponds to a rela-
tive equilibrium of the spherical artificial satellite, The Hamiltonian of this problem
can be written as [3]

H 1=/ 1/231’12”*" 1/2 p2*+ Y, ‘]22“}‘ P19+ s gt 4 Yy 0°py — You gt —
6 4°pu+ Yy pi? 0® + Vi 01202 + Yy 0100%p,

Using the method described in Sect, 5, we find the fourth-order normal form of this
Hamiltonian, The natural frequencies of the linear systems equal zero and one, There-
fore, the quadratic Hamiltonian is not normalizable in the usual sense, On the other hand,
it is easy to write out its phase flow

@ = — p°cosV+ p;°+ ¢°sinv+ ¢°+ pg° (6.1)
@ = (g° + p,°) cos v 4 p,° sinv — p,°
P1r==p1° pp = p°ye08v — (p,°+ ¢,°) sin v
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Since Hj; = 0, then, according to (5,1), »® = H, and u, = 0. Then from (5,2) we
get that »® = H, 4 H,. For finding #, we should substitute (6,1) into #, and average
over v as v —» + co. After simple computations we find that

H 2= Ys (g + Pt Pt 2 g%+ 2 poPpr -+ 4 aupa®py)

Finally, A can be represented as

KD = Yy (o1 4 )2 + 2l -+ Vs gy + p2)* 4 pi?l® (6.2)

From (6,2) we see that AW and, consequently, h are positive-definite functions, Hence
the stability of H follows immediately, which signifies the Liapunov stability of the
steady -state rotation being examined of the spherical artificial satellite on a circular
orbit,

7. On the basis of the normalization method described we set up a table which allows

us to write out the third-~order normal form directly from the original Hamiltonian
n

1
H=+5 R oa(@g+pd)+ 2 oug'p (1.1)
i=1 {Et1]=3

As was shown in Sect, 6, the third-order normal form of Hamiltonian (7, 1) can be repre-
sented as 1 —

B = ?2% (g +p®) + Z g p*

{h4-1]=8

The values of the averaged quantities are taken from the table in the column with the

corresponding values of the integral n-vectors 4 and / (the table indicates the values
of only the nonzero components of the integral vectors % and )

k=0, k) =01 ln) o*p
by =k; = Ry = 1 =0 T 9,9,9;, + + > g2, P,
+ (o + hanad +> p.ilQégpia + (e — + +> p’hpizqia
ki, — ki,: 1. l’ig =1 <'+’ + + +> q‘hq‘izpia + <+ - '*‘") qilpigq'i; +
4 = A = Py 83,4, = — T Py PP,
k=1 =1 =1 A+ gpp, - 49,0, T
+ = D PP, = 0 PP,
k=0 Iy = L=hL = 1 G o i nls M W 2 T8 e — A D 45,45,P, -+

+ = = D gy P, T — 0 Py,

The symbol <&;8,e48,> (&; = 1) denotes the algebraic sum &7 + €% +
€3X3 + €4Xa of the characteristic functions Y of the third-order resonances

0, A;=#0
%4 ={

1/4, Ai =0
Ay = oy oy ooy, A = oy b oy, —
Ay = oy, = o, + oy, Ag= — oy, -+ o, + o,

The author thanks V, V, Rumiantsev and the participants of the siminar directed by him
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SYNTHESIS OF DISCRETE VIBRATIONAL SYSTEMS
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V.N,MITIN and L, I, SHTEINVOL'F
(Khar kov)

(Received October 1, 1973)

We propose a synthesis method for the parameter group of discrete vibrational
systems, ensuring the maximal compression of the natural frequency spectrum,
We give a method for solving two problems: (1) for a specified spectrum and
definite part of the parameters find the values of the remaining parameters so
that the lowest frequency would occupy the given position on the number axis
and that the ratio of the highest frequency to the lowest would be minimal ;(2)
for a specified vibrational systern obtain a system with maximally compressed
spectrum at the expense of optimal vibration of a definite group of parameters,



