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We investigate to what general form can a Hamiltonian be reduced by an arbit- 
rary canonic malformation preserving the property of Liapunov stability. We have 
succeeded in answering this question fully in the case of a stable autonomo~ 

Hamiltonian. One of the results of the analysis undertaken is a method of reduc- 

ing the Hamiltonian to normal form in finite order, different from those proposed 

earlier [ 11, possessing definite advantages in comparison with them and exposing 
the connection between the methods of normalization and of averaging. We de- 
rive a table allowing us to compute from the original Hamiltonian its third-order 

normal form in the presence of any third-order resonances. A canonic transfor- 
mation of the original Hamiltonian to a form more convenient for study is usu- 
ally used in the investigation of the Liapunov stability of an equilibrium position. 
From such a viewpoint we can arrive at the method of 3irkhoff ~ansformations 
[Z] and many stability results have recently been obtained in this way, having a 
practical value (for example, [3-5-J and others). In the application of the method 
indicated it is necessary that there exist a close connection between the stability 
properties of the original and of the transformed Hamiltonians. Therefore, only 
autonomous transformations are usually used. However, such a restriction is not 
connected with the conditions for the applicability of the given method even in 
the case of an autonomous original Hamiltonian. It is interesting to consider this 
problem from a general point of view, without being tied down to the autonomous 

case. 
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1. we examine Hamiltonia~ not ~ntaining linear terms, defined on one and the 
same Zn-dimensional space, continuously differentiable with respect to the phase wor- 
dinates and depending continuously on time, The canonic transformations are treated as 
canonic automorphisms of this space. By the stability (or instability) of a Hamiltonian 
we mean the Liapunov stability (or Liapunov instability) of the zero solution of the cor- 
responding Hamiltonian system for t > u. The canonic transformation 

k : q; p --f q’ (t, q, p); P’ (t, q, r); t 3 0 

is called a canonic Liapunov transformation if k leads every stable Hamilto~an into a 
stable one and an unstable one into an unstable one. 

By L we denote the set of all canonic Liapunov transformations. Set L being a sub- 
group of the group of all canonic transformations, specifies an equivalence relation on 
the set of Hamiltonians being examined, namely, two Hamiltonians are equivalent (nota- 
tion: H1 - Hz) if we can find k E L and k : HI + Hz. We denote the equiva- 
lence class of Hamiltonlan H by L (H) , If H is autonomous, then L, (H) denotes 
the set of all autonomo~ Hamilto~ans equivalent to H. 

In connection with the investigation of stability in finite order it is necessary to modify 
somewhat the definitions presented. Firstly, all the Hamiltonians and canonic transfor- 
mations are assumed in this case to be ( m + 1 )-times continuously differentiable with 
respect to the phase coordinates (m is the order to which the stability is to be investiga- 
ted). Secondly, instead of k and H it is sufficient to examine the initial segments of 
their Taylor expansions up to m- th order. We denote them kim) and H@). Thirdly, 
the defi~tion of equivalence is changed ~~es~ndingly : two Hamiltonians HI and We 
are said to be m-equivalent (H~~~H~), if we can find a canonic ~ansformadon k : 
k+-1) E L leading H, into H,’ and Ht’(nz) G H&W. We note that if HlGiH2 and 
Hz(“) is a stable Hamiltonian, then If1 is said to be stable in the m-th order and the 
standard estimates (63 are valid for its phase flow. However, if Hztni) is unstable, then 
in a majority of cases we can show that Hr is unstable. 

2, Let us consider certain criteria for k to belong to L. If the functions q’, p’, yiel- 
ding a canonic transf~mation, are known in explicit form, we can apply the following, 

Assertion 1, Transformation k E L if and only if the following conditions are 
fulfilled: (a) 11 P’ (6 II, P); Q’ (6 47, p) 11 h as an infinitely small upper bound at zero ; 
(b) there exists a function 6 (e) > 0, defined in some positive neighborhood of zero, 

such that 11~’ (C q, P); 4’ (t, 4, P) (12 6 (E) when II P; q j( > E; t > 0. i-km 1 - 11 
is the norm in phase space. 

Proof. The sufficiency can be verified directly. We proove the necessity of con- 
dition (a). If it is not filfilled, then we can find sequences qi, Pi -+ 0; ti > o , and a con- 
stant C > 0 such that 

II P’ ttit Pi> Pi); Cl’tri7 4is Pi) II > c (2.1) 

Let HI be the preimage of an identically zero Hamiltonian rr, s o under transforma- 
tion k. Then q’ and p’ give the phase flow of HI for t > 0. In this case the instability 
of HI follows from (2.1) ; but since J!Iz is stable, k Z L. The necessity of(b) is proved 
analogously. 

It turns out that condition (b) is a corollary of condition (a) for many important classes 
of canonic transformations. The three assertions presented below refer to this case. 
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Assertion 2. If k possesses the group property, i. e. 

5 (t1 + tz> x) = 5 (f,> 3 (&., x)> @ = (PI (I)) (2.2) 

then k E L if and only if condition (a) of Assertion 1 is fulfilled, 

Proof. From the one-to-oneness of k and from (2.2) it follows that q’ = q, P’ = P 

for t= 0 and, therefore, k yields a canonic dynamic system in the neighborhood ofthe 
phase space origin. Let us consider an arbitrary invariant for t > 0, open neighborhood 

R of the origin. Al can be found because condition (a) is fulfilled and Poincark theo- 
rem on the recurrence of points v] is valid in R . We select constants 0 < & < a0 

such that the sphere S, = {P, 4 I II P, q II d 80) E R and 

$0, q, P); q’(t, 4, p) E; Se0 for t > 0; P* q E f&O (2.3) 

We now assume that condition (b) is not fulfilled. Then we can find a point 40, POER 

such that, firstly, it is Poisson-recurrent for t >, 0 f7] and, secondly, 11 go, p. fl> e. and 
il P’ tT7 PO, PO): P’ (T, Qo, PO) 11 gs, for some T ) 0. Hence it follows that we can find 

to > T for which 
II PC (tot PO, PO); Q’ 00, Qat PO) II > &cl 

If we denote 41 = d (I’, qo, po), pl = p’ (I’, qo, po), then from (2.2) and (2.4) we obtain 

II P’ (to - T* 91, PA Q’ (to - T, 91, PI) II > 80; 41, PI E %o 

whisch contradicts (2.3). The contradiction obtained proves what we required. 

The next two assertions are presented without proofs, based on the specifying the cano- 
nit ua~formation by a generating function. 

Assertion 3. In order that a linear canonic ua~f~mation be a Liapunov canonic 

transformation, it is necessary and sufficient that condition (a) of Assertion 1 be fulfilled. 

Assertion 4. If a canonic transformation starts with an identity transformation, 

then Mm) E L if and only if zJ”-l) has an infinitely small upper bound at zero for 

t > 0, where u is the generating function fork. 

3. Assertion 2 makes it possible to describe a sufficiently broad class of Liapunov 
canonic ~~sformatlons,The phase flow of ~amiltonian H is denoted k~. 

Assertion 5, If H is a stable autonomous ~amiltonian, then kH E L, 

Proof. By the definition of a stable Hamiltonian condition (a) of Assertion 1 is ful- 

filled for the canonic transformation kH. Since H is autonomous, k, satisfies the group 

property. Thus, all requirements of Assertion 2 are fulfilled and &r E L. 
We present here several corollaries of the last assertion, which can be useful in the sta- 

bility investigations of Hamiltonians. All the Hamiltonians below are assumed autono- 

mous. 
Corollary 1. If H is a stable Hamiltonian, then HX .zz - H is stable as well 

Corollary 2. If H(q, ~)isastableHamiltonian,then~s (Q, p) z H (p, 9) 
is stable as well. 

Corollary 3. If H is a stable Hamiltonian, then the zero solution of the correspon- 

ding Hamiltonian system is Liapunov-stable also for t < 0. 
Corollary 4. If {H, F} = 0 ({,} are the Poisson brackets) and F is a stable 

Hamiltonian, then H -, H + F. 
Assertion 5 makes possible a complete description of class L, (H) when H is stable. 
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Assertion 6, Let a be a stable autonomous Hamiltonian; then L, (H) consists 
of all stable autonomo~ Hamlltonians. 

Proof. Let F be a stable Hamiltonian, The canonic transformation k = kg’ 0 k, 

takes H into F. Since H and P are stable and L is a group, k E L by Assertion 5. 
Hence F - H, 

4, Consider the autonomous Hamiltonian 

H = Hz + If, + . . . (4 1) 

In the stability investigation of such Hamiltonians it is convenient to use canonic trans- 
formations with a generating function of the form 

u = !?Pf + z 4 (4 Q, P’> 
i 

(4.2) 

where ui is a homogeneous ith-order polynomial. By L* (H) we denote the set of all 
FC”) corresponding to those Hamiltonians P for which N%$’ (see Sect. 1) in the class 
of canonic transformations with a generating function of form (4.2). The class L,” (H) 
is determined from Lm (H) in the same way that La (H) was from L (H). 

The main question to be studied in Sect4 is the description of classes f&“’ (H). The 
class Las (B’) consists of only one Hamiltonian Hz. Therefore, we begin out analysis 
with m 23. Here, as usual, we assume that Hs is a stable Hamiltonian; if this is not 
so. then, excepting the singular case of nonprime elementary divisors, H is unstable. 

To study the class La3 (rr> it is sufficient to retain only u3 in (4.2). As follows from 
Assertion 4, in order that kc21 E L, it is necessary and sufficient that 

SUP&O I % 6 9, Pf I -=z + O” (4.3) 

Let us consider a canonic transformation Ic with a generating function (4.2), where t+=O 
for i > 3 and us satisfies (4.3). Transformation k takes H into F defined by an 
identity in q, p’, t 

F 
( 

t, -j$- , p’) = H (q, g) + -$- 

Expanding both sides of the identity in a neigbb~h~ of point q, p, we get that 
Fz s Hz, and F, is found from the relation 

dusldt + {%, Hz} = @a= F, - rr, (4.4) 

Thus, for P3) z Hz f F, to belong to La9 (H) it is necessary and sufficient that a 
cubic solution of Eq. (4.4) be found, satisfying (4,3). Here Fa is independent of t. By 
direct computation we can verify that the general cubicsolution of (4.4) is 

t 

u3 = o @3&J- rr 9, P)) & + v3(k CrvP) 
s 

(4.5) 

where V, is an arbitrary cubic first integral for Ha ({~a, Hz} = 0). kt us ascertain 
the conditions under which solution (4.5) of Eq. (4‘4) will satisfy (4.3). The phase flow 
of the stabIe quadratic Hamiltonian H,.is a linear conic transformation almost-periodic 
on the whole axis. Therefore, the first summand in expression (4.5) is bounded for t > 0 
if and only if it is almost-periodic for t > 0 [Sj. We denote it w3. We note that the 
almost-periodic&y of w, for t > 0 is equivalent to the almost-periodic&y of wa for 
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t < 0. Indeed, the identity 

% ($7 hHp & 4, P)) = - w3 (- t, 4, p) 

is valid. The left-hand side of this identity, being a superposition of two functions almost- 
periodic for t ‘a 0, is also almost-periodic for t > 0 [9]. The equality [8] 

@ = ikfCf>, (k,,) = 0 

serves as a necessary, and since wg is a trigonometrical polynomial, and also sufficient 
condition for the almost-~ri~ici~ of ~3 (- g, Q, p1 . Here the overbar signifies ave- 
raging over the phase flow k.sz for 
t for t > 0. 

t > 0 , while &I is the operator of averaging over 

The sec‘ond summand in (4.5) is represented as [ 1 o] 

u3 (t, q, p) = 03 &Hz (d 4, P)) 

where wsis an arbitrary third-order form. Therefore, ws is an almost-periodic function. 

Consequently, if ;i; 3 = 0, then rye is an almost-periodic and, consequently, bounded 
fiction’ Thus, the criterion for F@) to belong to Las (B) can be written as 

Fa = R, (4.6) 

(Rs is a cubic polynomial uniquely definable from H). Relation (4.6) signifies that 

there holds - 
Assertion 7. Class La3 (22) is an invariant set for the operator of averaging over 

the phase flow I&, and is completely deflned by this condition, 

To prove this we merely note that JJ2 G Hz. The rest follows immediately from 

(4.6). 
Assertion 8. If F(3) E La3 (w) then we can find an autonomous canonic trans- 

formation establishing this membership. 
This assertion has a rather unexpected corollary : the extension of the class of admis- 

sible canonic transformations up to the nonautonomous forms (4.1) does not extend the 

class of equivalent Hamiltonians obtainable. 

Proof. Let Ft3) E Las (H). In this case, according to (4.6), F;, = Es and, as was 

ascertained above, the generating function us defined by (4,5) is a cubic ~lynomial 
with almost-periodic coefficients. Therefore, au, /a~, (t - (g, p)) is a quadratic form 

with almost-periodic coefficients. let us show that 

M &&,,, 
i i 

To do this we write ug as 

Using the linearity of the averaging operator, we obtain 

(4.7) 

We apply the averaging operator to identity (4.4). where the function us is defined by 
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(4.5) 

+ M (113, Hz} z MO3 (4.8) 

From (4.7) it follows that M (ua, Hz} = (Mu,, H,}. In addition, because us is bounded 
and a3 is autonomous, .r~l&+ / Bt = 0 and M% = @P Therefore, (4.8) becomes the 
identity {Mu,, H,} ES @. This identity signifies that Mu, is an autonomous solution of 

(4.4). Q. E. D. 
Assertion 8 narrows the class of admissible canonic transformations of form (4.2) down 

to autonomous ones. It turns out that for obtaining the class La3 (@) it is sufficient to 
examine not all the autonomous transformations but only those in which the generating 
function satisfies the condition IL3 = 0. 

Let us prove this. As we ascertained above, if Fc3) E Lag (El). then the canonic trans- 

formation with generating function ZL = pp’ + ~~~~~~ where wa is determined by (4.5) 

establishes the equivalence H, - F. (The subscript of symbol M for the averaging 

operator denotes the variable with respect to which the averaging is carried out, while 
the superscript denotes the direction of the averaging: minus corresponds to t - - 00, 

plus corresponds to t + f 00.) We denote u3* s M1-w,. Using the strengthened theo- 

rem on the mean [8], we obtain 

&* = M + ~ us* (kH, (r, q, p)) = M,+[Mt-% (kH,)] = M,+ [Mt- (% (t - 
z, q, p) - wa (- 7, q,p))l =A!&+ [us* - ws t-z, q7 P)l = us* - us* = 0 

Thus, to obtain the whole class La3 (H), it is sufficient to apply to H the set K3 of 

autonomous canonic transformations of form (4.2) with ui = 0 for i > 3 and ii3:-0. 
It can be shown that Ks is the minimal set generating La3 (H). Combining all the 
facts proved above, we can state 

Assertion 9. To obtain the class La3 (H) it is necessary and sufficient to apply 
the set K, of canonic transformations to H . 

Set K3 essentially depends upon the presence of third-order resonances in H,. Thus, 
if H, does not have them at all, then it can be shown that K, contains all cubic forms, 

while at the other extreme case of Ht G 0 it is easy to convince ourselves that K’, 
contains only the identity transformation. Correspondingly, in the first case the class 
La3 (H) includes all possible Ft3), while in the second, only F(3) s H(3)_ 

Let us pass on to the investigation of La4 (H). Let J’t4) E La4 (H), Then, accord- 

ing to Assertion 4, F(‘) E L,” (H). For the determination of Fd we obtain the equation 

~+{,,,H~=~*~F,-H*--~~ (4.9) 

Equation (4.9) can be investigated in just the same way as Eq. (4.4). We state here the 
result of such an investigation. 

Assertion 12. In order that Fc4) E Lo4 (H), it is necessary and sufficient that 
p4, = jjw + y4. 

Assertions of type 7 and 8 do not hold for La4 (H) because, in general, Yy, depends 
on t. But if we restrict ourselves in (4.2) to u3 E K3, then Assertion 7 carries over 
verbatim to L,’ (H), while in Assertion 8, instead of K, we should take the set K4 of 
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autonomous canonic transformations of form (4.2) with ZL~ z 0 for i > 4 and ii, = 
ii4 = 0. The investigation of classes Lam (H) for nl> 4 proceeds analogously. In the 
general case the condition for the membership : Fm E 15,” (H) is the equality FcnL) = 

EcnL) + Y(““l, where Ycrn) depends upon F( ‘1, @) with i < n. Here, if we use only the 
canonic transformation from Km_, for obtaining F@-l) , then for obtaining F@“) it is 

necessary and sufficient to apply to H the transformations from K,, where K, is the 

set of autonomous canonic transformations of form (4.2) with r+ 3 0 for i > nt and 
ti3 = . . . = ii* = 0. 

6. Let us explain how to find the normal form of an m th-order Hamiltonian H in 
the class L,” (H). For this we present, first of all, a definition of normal form some- 
what different from the usual one. 

Definition. The Hamiltonian hcrn) ES H, + h, + . . . + )z, e.Lam (H), 
being in involution with H, , is called the mth-order normal form of the Hamiltonian 

(4.1). 
As follows, for example, from [ 11, this definition is equivalent to the standard one 

(defining the normal form as a polynomial with terms of a special structure) if H, has 

already been normalized, i.e. H, = 1/2 E Ai (qii” + pi!). in the general case the de- 
finition given is a generalization of the classical definition of normal form, which is not 

essential but is convenient for applications. 

We start with the finding of the third-order normal form. From the definition given 

above and from (4.6) it follows that /z(a) G Ha + ha; Ea = A,; hs is the first inte- 

gral for H, and, therefore, Es = 11s. Consequently, the third-order normal form is 

hc3) = H, + 8, (5.1) 

Formula (5.1) makes it possible to determine the third-order normal form right away, 
without having to find the normalizing transformation ; from H, only stability is requi- 

red. In particular, H, can have zero or equal natural frequencies. Note that the com- 
putation of Hs reduces to a simple computation of the integrals of sines and cosines. 
These cases were not examined in the usual approach to the normal form. An exception 

is the recent papers [ll, 121 in which the normal form of a Hamiltonian system with two 
degrees of freedom is found in the presence of equal frequencies and certain applications 

of the normal form obtained to stability questions are studied. 
For finding the fourth-order normal form, as in the case examined above, we obtain 

that 
h(4) = 10 + a4 + $* (5.2) 

where Y, is determined from (4.9). For finding h, in \Ya we should set J’a ES ps 

and u3 = ws E K,. Analogously, we can show that for m > 4 the normal form is 

determined by the relation 
hC”, EZ kc”-1) + grn + Fm (5.3) 

where Ym is completely determined by H (n’-l). We shall not derive here the general 

form of y, because of its awkwardness. We note merely that if we restrict ourselves 
to class K, when finding the normalizing transformation, which is sufficient,as was ascer- 
tained above, then Ym and, respectively, the normal form htrnJ are determined uniquely. 
If, however, this condition is waived, then such uniqueness is not obtained, in general, 
because of the presence of an arbitrary first integral in formula (4.5). 
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The normalization method presented allows us to establish the close connection bet- 
ween the methods of normalization and of averaging. For this we apply the canonic 
transformation k$ E L to the original Hamiltonian B . We then obtain 1”1- P: 
E;z = 0, F3 = If, (~~*), F4 = Ho (k&l. Next, we make one more canonic trans- 
formation L: g, p -+ e-‘gt e-‘p with valence e-2, where E is a small parameter. 
We get that F -- G: G, = 0, G, = eF3, G4 = E~F~. The equation system with 
Ha miltonian c 

q’=+&+ . ..) 

is the standard system in the theory of averaging, Let us convince ourselves that we can 
apply Bogoliubov’s f~damental averaging theorem [8] to it. To do this it is sufficient 
to show that ~~~~~s/~~ (X = (g, p)) exists uniformly in a neighborh~ of zero, For 
which, in turn, it is sufficient that tile family of functions 

be uniformly bounded and equicontinuous. The first is obvious. While the second follows 
from the fact that dZF, / ax,aXj are functions linear in x and almost-periodic in t 
and, therefore, are ~f~rnly bounded. 

Using the permutability of the operators of averaging and of differentiation (see Sect. 
4), we can write the first-approximation averaged system as 

Carrying out the inverse canonic transformation &$~k-~, we get that the Hamiltonian 
of the fist-ap~oximation equation system is equivalent (in the sense of Sect. 1) to the 
tbird-order normal form of the original Hamiltonian. An analogous analysis can be made 
for the higher orders. 

6. Let us consider a mechanical example, being of independent interest, which illu- 
strates the application of the results of Sect. 5 to the stability investigation of Hamilton- 
ian systems. In 131, in the investigation of the stability of the steady-state rotations of 
a symmetrical artificial satellite in a circular abit, the cases which in the parameter 
plane correspond to the boundaries of the stability domains were not considered. Let us 
analyze one such case here, namely, when a = p = 1. This case corresponds to a rela- 
tive equilibrium of the spherical artificial satellite. The Hamiltonian of this problem 
can be written as [3] 

H = “12 P12 -I- ‘fz Pa2 + II2 93% + pi92 + 1ts 914 + 

‘J6 qa3Pi + “Jz P? q? + ‘14 q12qg + ~3 qlq22p3 

“12 Qp* - ‘124 934 - 

Using the method described in Sect. 5, we find the fourth-order normal form of this 
HamiItonian. The natural frequencies of the linear systems equal zero and one. There- 
fore, the quadratic Hamiltonian is not normalizable in the usual sense. On the other hand, 
it is easy to write out its phase flow 

q1 = - ~3~ cw v + PI0 + q2’ sin v + q10 + ~3’ 

q2 = (93’ + pl”) co9 v + ~3’ sin v - plD 

p1 = pl”, p3 = poz cos v - (plo + qzo) sin v 

(6.1) 
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Since H, = 0, then, according to (5. l), hC3) = H, and us = 0. Then from (5.2) we 
get that h(*) = H2 + B4. For finding ii4 we should substitute (6.1) into Hd and average 
over v as y - + 60. After simple computation we find that 

EEi, = % (81” + PI* + Pa4 + 2 41% + 2 P*“P14- 4 41PlW 

Finally, &(*I can be represented as 

J&Q = l/2 [(PI + 9*P + Pz21 + l/Y [(a + PaP + P1212 (6.2) 

From (6.2) we see that hcP~ and, consequently, h are positive-definite functions. Hence 
the stability of H follows immediately, which signifies the Liapunov stability of the 
steady-state rotation being examined of the spherical artificial satellite on a circular 
orbit. 

7, On the basis of the normalization method described we set up a table which allows 
us to write out the third-order normal form directly from the original Hamiltonian 

n 

(7.1) 

As was shown in Sect. 6, the third-order normal form of Hamiitonian (7,l) can be repre- 
sented as jtC3) = f #Y&j (4i2 -+- Pi”) + c %QICPi 

lki_ll=S 

The values of the averaged quantities are taken from the table in the column with the 
corresponding values of the integral n-vectors /i and I (the table indicates the values 
of only the nonzero ~mponen~ of the integral vectors k and 2) 

k=(kl, ..,,kn) 1=(11, . . . . In) 
k 1 

k,, = kil = his =: 1 1=0 <+ + f +l 9jtYjsYi~f (- + + --) 4j,Pi$& + 

+ <-- + - +> F.j,Qj&* + <-- - + -t-j Pi,&,%, 

ki,= ki3= i lia = 1 <+ + + f) ‘3i,qi2Pi, + (f - - -t) Pi,Pi,(li, + 

+ <+ - + --) PiE)il(ljpYiJ + CA - + i-1 P&P@& 

k*, = 1 lip = ‘<, = 1 <+ + 4 +) QQ&P& + (- + + --) Qii4i$i, + 

+<-I-+ - -_) Pi,qi$i, + c+ - + -) P&P&Pis 

k-0 iii z.z l& = I& = 1 < + + + +> P&P@+, + <- - + +) 9i,qiJ$ -f- 

+ <-- -i- - +, (I&Pi3 t <- t + -) Pi,%&* 

The symbol (E~Es~sa~) (Q = fl) denotes the algebraic sum alxl + eZxZ + 
83x3 -k &4X4 of the characteristic functions xi of the third-order resonances 

xi = { :;& 2;:; 

-% = ai, -I- oii -t- ai,, A2 = ai, + ai, - ai, 

AS = ai, - ai, 4 ais, A4 = - a;* -+ ai,+ ai 

The author thanks V. V. Rumiantsev and the participants of the siminar directed by him 
for useful discussions of the results of this paper. 
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We propose a synthesis method for the parameter group of discrete vibrational 
systems, ensuring the maximal compression of the natural Frequency spectrum. 
We give a method for solving two problems: (1) for a specified spectrum and 
definite part of the parameters find the values of the remaining parameters so 
that the lowest frequency would occupy the given position on the number axis 

and that the ratio of the highest frequency to the lowest would be minimal ;(2) 
for a specified vibrational system obtain a system with maximally compressed 
spectrum at the expense of optimal vibration of a definite group of parameters. 


